

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 1 of 18
Last updated: December 3, 2004

Centers for Disease Control and Prevention
National Immunization Program

Programmer's Guide To
The Automated Immunization Evaluation Process
Version 2.0

1.0 Introduction

The heart of an Immunization Information System is its ability to evaluate individual immunization
histories for completeness and up-to-dateness. This functionality is used, first, to identify
individuals who are in need of further immunization services; second, as a guide to the
administration of immunizations in providers' offices; and, third, to assess the progress of
providers and immunization programs, in general, toward the goal of complete immunizations for
all.

The design and implementation of immunization evaluation algorithms, heretofore, has occurred in
the context of individual system development. Consequently, there is considerable variation in the
scope and operation of the mechanisms -- some simply count the number of doses received at
specified age thresholds; others attempt to emulate standard immunization schedules exactly, by
taking into account the recommended intervals between doses and other factors. In some systems,
the algorithm is embedded completely in program source code or rule- based procedure, while, in
others, a parameterized approach has been taken, placing the variable aspects of the process in
data tables, to minimize the need to change program code when changes occur in the
recommendations themselves.

There is, at present, no definitive guidance for developers on the creation of immunization
evaluation algorithms; nor does there exist a mechanism for evaluating them to certify that they
are correct, that is, that they give the right answers in all situations. This paper represents an
attempt to provide that guidance.

First, a process definition will be offered and the design objectives and set of features of an ideal
algorithm will be described. Then, an analysis of functional requirements will be made, followed by
a description of the algorithm itself, including relevant parameters and process. Finally, a
discussion will be made of methods for implementing the algorithm and evaluating its performance.

2.0 Immunization Evaluation Process Definition

An immunization evaluation process, or algorithm, is a function that takes, as parameters, (1) an
individual history of immunizations and contraindications to immunization, (2) the individual's
birthdate, (3) a set of rules, governing immunization requirements and (4) a date as of which the
rules are to be applied, and returns a list of zero, one or more recommended immunizations.

An individual immunization history is a table of immunizations received by the individual; each
immunization is characterized by a vaccine type and a date as of which the immunization was
administered. An individual history of contraindications is a table of conditions, pertaining to an
individual, which would preclude the recommendation of specified immunizations; each
contraindication is characterized by a vaccine type and an expiration date, after which the
contraindication would no longer be in effect.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 2 of 18
Last updated: December 3, 2004

3.0 Design Objectives

There are two major objectives for the design of an immunization evaluation algorithm:

1. It should be able to apply exactly the rules for immunization embodied in the ACIP or AAP
schedules. Operationally, this means that the algorithm should make the same
recommendations about specific vaccines that an expert clinician would make, when
applying either of the schedules to a given immunization history.

2. The algorithm should be structured so that any changes to the ACIP or AAP schedules may
be implemented without changing program source code.

These objectives are stringent ones. They represent ideal performance goals that may be
approached over time through an iterative development process.

4.0 Features

An ideal immunization evaluation algorithm will have the following features:

 Any number of immunization schedules (rule sets) may be defined. The two main ones are
embodied in the ACIP and AAP recommendations, but it may be desirable to define
variations of them, customized for different providers, or completely different schedules for
special purposes, like epidemic control. Applications using the algorithm should, when
appropriate, allow users to select a desired schedule for use in specific situations.

 Within a given schedule, any number of vaccine series may be defined. A series definition
will contain the recommendations for a given type of immunization.

 Any of the details of a schedule definition may be modified or deleted through an
interactive process by authorized users.

 The algorithm should use the Anniversary Method for adding or subtracting time intervals
to or from dates. (For an explanation of the Anniversary Method, see Section 8.0)

 The algorithm should recommend combination vaccines in preference to single-antigen
vaccines, when appropriate. Combination vaccines contain immunizing agents for more
than one type of immunization.

 At the option of the user or application, the evaluation function should (1) return a list of all
vaccines recommended as of the specified date, or (2) the next recommended vaccine from
the list, in round-robin order.

 In the event that the individual is up-to-date or complete on all defined series, the function
should have the capability of projecting the earliest date at which immunizations would be
recommended again.

 The function should have the capability of providing a schedule of immunization visits that
an individual would have to make in order to complete all the recommended series. The
schedule could be adjusted to fit any point in the individual's immunization history. In
addition, this function should be capable of providing customized schedules, based on user
preferences for, say, minimizing visits or injections per visit.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 3 of 18
Last updated: December 3, 2004

5.0 Functional Analysis

The analysis of functional requirements will be carried out in relation to the ACIP Immunization
Schedule -- it is extremely complex, so it will be assumed that a parametric process that
adequately models its recommendations will also be able to cover any other type of schedule
satisfactorily.

Immunizing agents are designed to confer immunity against specific disease antigens or toxins, like
measles, polio and diphtheria. One or more doses of an immunizing agent, administered over a
period of time, may be required to produce long-lasting immunity.

The ACIP Immunization Schedule describes several categories, which in general correspond to
individual antigens, and sets forth, for each one, the number of immunization doses that will be
required to produce complete immunity, based on immunological research and clinical trials. These
categories will be referred to as immunization series.

Although immunization series in the ACIP Schedule generally correspond to single antigens, this is
not always so: DTP (diphtheria-tetanus-pertussis) and MMR (measles-mumps-rubella) are regarded
as series, even though they each refer to multiple antigens. It would be more to the point to say
that immunization series correspond to vaccines, rather than antigens, since both DTP and MMR
are vaccine products. From the perspective of an immunization evaluation process, this is, in fact,
a more useful approach, since immunization histories (the things being evaluated) are defined in
terms of vaccines administered to individuals.

It is important to note, however, that a given series may relate to more than one vaccine (the polio
series includes OPV and IPV) and a given vaccine may relate to more than one series (DTP/Hib
vaccine applies both to the DTP series and the Hib series). An immunization series, then, refers to
one or more vaccines, non-exclusively. (Note that, in some discussions, immunization series are
referred to as vaccine groups or "families", but the structure is the same.)

As noted previously, the ACIP Schedule defines, for each series, a number of doses required to
produce immunity against the respective diseases. If an individual receives the required number of
doses (subject to conditions described below), he is said to be complete for that series; otherwise,
he is said to be incomplete. A series, however, may be open-ended: there is, for example, no
maximum number of doses for the Td (Tetanus- diphtheria) series; individuals should receive
periodic doses of this vaccine throughout life.

If an individual is incomplete for a given series, he may or may not be eligible to receive the next
dose at a given point in time. The ACIP Schedule prescribes minimum intervals between successive
doses in a series. If an individual receives a subsequent dose of vaccine before the minimum
interval of time has passed since the previous one, that dose is not counted toward the number
required for the series. (Some ACIP analysts maintain that the minimum time interval for counting
the next dose is different from the minimum interval for administering the next dose. Accordingly,
in this guide, separate minimum interval parameters will be maintained, one for counting and the
other for administering a subsequent dose, although it would be valid for both of them to have the
same value in specific instances.)

When the minimum interval for administration has passed, the individual may receive the next
dose in the series, but, in general, the ACIP Schedule does not recommend immunization at that
point. Instead, it prescribes a recommended interval of time before the next dose is given. Until
this interval has passed, the individual is said to be up-to-date for the given series.
Another way in which the ACIP Schedule represents intervals between doses in a series is by
minimum age. For individuals who start each series on time, the minimum age parameters are

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 4 of 18
Last updated: December 3, 2004

implied by a cumulation of the minimum intervals. However, for those who start the series later,
the recommended intervals may be shortened, so it is necessary to use both parameters in
evaluating immunization histories.

Current formulations of the ACIP recommendations, it should be noted, allow a degree of flexibility
in the specification of recommended ages for immunization. For selected series and doses, a range
of ages is specified, within which immunization may be recommended. One way to implement this
feature would be to allow providers to select recommended ages within this range for use in the
evaluation process.

Some vaccines may not be given to individuals above a certain age. For example, oral polio vaccine
is not recommended after the 18th birthday. Therefore, it must be possible to specify a maximum
age for given vaccines. This parameter is not dose-specific; it applies to any doses of the specified
vaccine.

Under certain conditions, the ACIP Schedule recommends accelerating or abbreviating
immunization series. For individuals who start a series much later than the recommended time, it
may be recommended that subsequent doses be given at the minimum, rather than recommended,
intervals. Also, in these cases, the number of doses required may be reduced. These rules are
dependent in some instances on the age at which the first dose in the series was received, and, in
others, on the age at which the last dose was received.

Although the ACIP Schedule does not specify it, there is another kind of interval that, as a practical
matter, is important to take into account: immunization history evaluations are often used to
trigger follow-up activities designed to return the individual to a provider to continue the
immunization process. If the recommended intervals were used for this purpose, follow-up might
be performed on individuals who were already planning to return for scheduled immunizations;
effort and resources could, therefore, be wasted. Most providers prefer to wait for a period of time,
beyond the recommended intervals, before initiating follow-up actions. Hence, an overdue interval,
should be specified, not as an evaluation parameter, but as a provider-controlled adjustment to the
recommended interval, to be used in immunization recall processes.

In this discussion, it is important to note that the interval and age parameters between doses in a
series are not constant: the minimum or recommended interval between dose one and dose two
may be different from that between dose three and dose four. Intervals and minimum ages,
therefore, must be regarded as dose-specific parameters.

Also, within a given series, the interval and age parameters may vary by vaccine type. So it must
be possible to specify the parameters individually for each vaccine when necessary.

In some cases, the next dose in a series may not be given within a minimum interval after the
administration of a vaccine that is not in the series. For example, measles vaccine may not be
given within a specified interval following a rubella or mumps vaccination, and vice versa.
Therefore, it must be possible to include a vaccine in a series definition for the purpose of
evaluating the interval only; such vaccines would not count toward the required doses in the series,
nor would they be recommended for administration.

In general, if it is determined that the next dose in a series is due, any of the eligible vaccines in
the series may be administered. However, combination vaccines (those that apply to more than
one series) should be used in preference to single-series vaccines, if all the series they apply to are
currently recommended; otherwise, the single-series vaccines should be used.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 5 of 18
Last updated: December 3, 2004

Also, in applications that have inventory control modules, it would be useful for the evaluation
algorithm to give preference to vaccine types that are available in stock.

Beyond this, if more than one vaccine is eligible for use at a given point in time, it would be useful
to specify an order of preference in the series definition process; otherwise, the automated
selection of a vaccine type would be arbitrary.

The foregoing analysis shows the ACIP Immunization Schedule to be a very complex set of rules.
In order to design a general algorithm to model this process, that does not have to be changed
over time, an equally complex set of parameters must be specified. The next sections will attempt
to describe an algorithm and parameter set that can achieve this objective.

6.0 Data Structure

6.1 Evaluation Parameters
The parameters that make up the evaluation rule set may be conceptualized as four linked data
tables with associated parameters:

1. Schedule Definitions

Schedule Name*
Age at First Dose (any series)

2. Series Definitions

Schedule Name*
Series Name*
Age at First Dose in Series*
Number of Doses Required for Series
Unlimited Doses Flag

Series Return Date**

3. Series Vaccine Definitions

Schedule Name*
Series Name*
Age at First Dose in Series*
Series Vaccine Name*
Interval Only Flag
Vaccine Sequence Number
Minimum Age
Maximum Age

Vaccine Eligible Flag**
Eligible Vaccine Count**
Vaccine Combination Count**

4. Vaccine Dose Definitions

Schedule Name*
Series Name*

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 6 of 18
Last updated: December 3, 2004

Age at First Dose in Series*
Series Vaccine Name*
Dose Number*
Minimum Interval to Count Dose
Minimum Interval to Administer Dose
Recommended Interval Minimum Age
Recommended Age
Valid Recommended Age Range (From and To Parameters)
Skip Age (age at which next dose may be skipped)

* columns which, concatenated, form a unique key for table
** algorithm working storage, not stored with parameters

The tables, linked by their common fields, form a hierarchical dataset. Each Schedule Definition
would be represented, with its associated attributes, in the Schedule Definition table; it would
have one or more Series Definitions in the Series Definition table, and each series would have
one or more Vaccine Definitions in the Series Vaccine Definitions table, and so on. This is an
abstract description of the data structure. Later on, an actual implementation will be described.

The evaluation algorithm will use these parameters to make judgments about an individual's
immunization needs. In addition to the evaluation rule set, the following data elements will be
used from the Immunization and Contraindication Histories:

6.2 Immunization Data

Immunization History

Age at First Immunization (any series)
Age at First Immunization of a Specified Series
Age at Last Immunization of a Specified Series
Dose Number of Last Dose Received in a Specified Series
List of Immunizations and Dates Received, in Date Order

Contraindications History

List of Contraindications - vaccine type and expiration date

Finally, from the application, or user of the algorithm, two parameters must be specified at the
time an evaluation is performed: Evaluation Mode and Evaluation Date.

7.0 Algorithm

The basic algorithm evaluates one immunization series in the selected schedule. It may be
represented as a function:

Recommendation = GetRecommendation(Series, Vaccine, Mode, Date);

Series is specified as an input parameter; it is referred to in the function as the
SeriesBeingEvaluated. The return parameter, Recommendation, will have one of the following
values: COMPLETE, UP_TO_DATE, NO_RECOMMEND, CONTRAINDICATED, WRONG_ALTERNATE or
RECOMMEND.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 7 of 18
Last updated: December 3, 2004

If the return value is RECOMMEND, the parameter, Vaccine, will contain the name of the vaccine
that is recommended.

Mode is specified as an input parameter, with one of the following values: RECOMMENDED,
OVERDUE or MINIMUM. This determines which set of dose interval parameters are used in the
evaluation.

Date is specified as an input parameter and represents the date as of which the evaluation is to be
made. It may be any date, on or after the birthdate of the individual. All interval and age
determinations will be computed relative to this date. The default is the System Date.

If the value returned by the function is UP_TO_DATE, Date will contain the earliest date at which
immunizations will be recommended again. This date will be maintained in the function in a data
element, SeriesReturnDate.

GetRecommendation has the following structure:

{
SetDefaultMode();
Recommendation = GetEligibleVaccines(Series);
if (Recommendation == RECOMMEND)

{
CheckOtherSeriesForEligibleVaccines();
Vaccine = SelectEligibleVaccineForRecommendation();

}
if (Recommendation == UP_TO_DATE)
Date = SeriesReturnDate;
return Recommendation;

}

The function, SetDefaultMode, does the following: if Mode is OVERDUE, the function returns with
no change in the value of the Mode parameter. Otherwise, if the individual's age at which the first
dose of any series was received is equal to, or greater than, the AgeAtFirstDoseAnySeries
parameter, then Mode is set to MINIMUM, else it is set to RECOMMENDED.

The function, GetEligibleVaccines, has the following structure:

{
DoseCount = GetSeriesDoseCountFromHistory();
RightAlternate = CheckForRightAlternateSeries();
if (RightAlternate == FALSE)
return Recommendation = WRONG_ALTERNATE;
if (DoseCount >= DosesRequiredForSeries && !UnlimitedFlag)
return Recommendation = COMPLETE;
SetAllSeriesVaccinesToEligible();
ExcludeContraindicatedVaccines();
if (EligibleVaccineCount == 0)
return Recommendation = CONTRAINDICATED;
ExcludeVaccinesOutsideAgeRangeForSeries();
if (EligibleVaccineCount == 0)
return Recommendation = NO_RECOMMEND;
ExcludeVaccinesNotEligibleForNextDose();

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 8 of 18
Last updated: December 3, 2004

if (EligibleVaccineCount == 0)
return Recommendation = UP_TO_DATE;
else
return Recommendation = RECOMMEND;

}

The function, GetSeriesDoseCountFromHistory, does the following: it scans the individual's list of
immunizations in date order and, for each vaccine type that is included in the list of vaccines
defined in the series parameters, a dose count is incremented and the immunization is copied to a
list of immunizations received for the series. In other words, the function pulls out from the
complete history just those immunizations that are included in the series definition and counts
them. The function then scans the new list of series immunizations and decrements the dose count
for any that were given within the minimum interval defined for the previous dose, but leaves the
immunization(s) in the series list. Finally, the ages of the individual when the first and last series
doses were given are computed.

The function, CheckForRightAlternateSeries, scans all alternate parameter definitions for the same
series, if any, to determine if the current series is the right one to use in the evaluation. Alternate
Series may be defined with different parameters for the age at which the first series dose was
given. The function returns TRUE if the age at which the first series doses was received (computed
in GetSeriesDoseCountFromHistory) is greater than or equal to the current Series Age At First Dose
parameter, but less than the same parameter in the next alternate series definition, taken in order
of the parameter. Otherwise, it returns FALSE. An example may be helpful here: for the Hib
(Haemophilus Influenzae b) immunization, the ACIP Schedule defines four independent series,
depending on the age at which the first dose in the series is received: if the series is started at two
months of age, four doses are required at appropriate intervals; if it is started at seven months of
age, three doses are required; at 15 months, two doses are required and at 59 months only one
dose should be given. Four parameter series (one regular and three alternates should therefore be
defined. For an individual starting the series at 13 months of age, the function should select the
alternate keyed to the seven-month starting age and, hence, the algorithm should call for three
doses to be given.

If CheckForRightAlternateSeries returns FALSE, then the subsequent functions in
GetEligibleVaccines are not evaluated and GetEligibleVaccines returns WRONG_ALTERNATE.

If CheckForRightAlternateSeries returns TRUE, then the SeriesBeingEvaluated is the appropriate one.
The count of series doses received by the individual is then compared to the number of doses required
in the Series Definition. If the number of doses received is equal to or greater than the number
required, then GetEligibleVaccines returns COMPLETE.

The function, SetAllSeriesVaccinesToEligible, initializes the VaccineEligibleFlag to TRUE for each
vaccine in the Series Vaccine Definition and sets EligibleVaccineCount equal to the number of
vaccines.

The function, ExcludeContraindicatedVaccines, checks each vaccine in the Series Vaccine Definition
to see if it appears in the list of current contraindications. Any series vaccine found in the
contraindication history with an unexpired date is flagged as not eligible for recommendation
(VaccineEligibleFlag is set to FALSE and EligibleVaccineCount is decremented).

For any vaccine flagged as ineligible because of contraindication, the date when the
contraindication would expire is compared to the current value of SeriesReturnDate. If the
expiration date is earlier, then SeriesReturnDate is set equal to it.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 9 of 18
Last updated: December 3, 2004

If, on return from this function, EligibleVaccineCount is zero, GetEligibleVaccines returns
CONTRAINDICATED.

The function, ExcludeVaccinesOutsideAgeRangeForSeries, checks the minimum and maximum age
parameters for each vaccine in the series. If the individual's age as of the evaluation date falls
outside this range for a given vaccine, the vaccine is flagged as not eligible for recommendation
(VaccineEligibleFlag is set to FALSE and EligibleVaccineCount is decremented).

For any vaccine flagged as ineligible because the individual is younger than the minimum age, the
date when the vaccine would be eligible is computed and compared to SeriesReturnDate. If it is
earlier, SeriesReturnDate is set equal to it.

If, on return from this function, EligibleVaccineCount is zero, GetEligibleVaccines returns
NO_RECOMMEND.

The function, ExcludeVaccinesNotEligibleForNextDose, examines the dose interval and age
parameters for each eligible vaccine in the series and compares them to the actual intervals and
age of the individual at the last series dose that was received. Specifically, the dose number of the
last dose received is determined from the list of series doses (compiled in
GetSeriesDoseCountFromHistory) and this number is used to reference the appropriate dose-
specific parameters in each Vaccine Dose Definition. Next, the Skip Age parameter for the specified
dose number is evaluated: if the individual's age at that time is equal to or greater than the Skip
Age (and Skip Age is not 0) then the last dose number is incremented and the remaining dose-
specific parameters are evaluated, using this number. The effect will be to skip the next dose in the
series. Then, the dose-specific age and interval parameters are evaluated as follows: for each
eligible vaccine, if the appropriate interval has not passed since the last dose was administered, or
if the individual is younger than the minimum age for the next dose, the vaccine is marked
ineligible for recommendation (VaccineEligibleFlag is set to FALSE and EligibleVaccineCount is
decremented). Note that any vaccines, included in the Series Vaccine Definition only for interval
evaluation (IntervalOnlyFlag is TRUE), are also marked ineligible at this point.

For any vaccine marked ineligible, the date when it would be recommended is computed and, if
earlier than the current value of SeriesReturnDate, SeriesReturnDate is set equal to it. The
particular interval parameter (Minimum, Recommended or Overdue), selected for evaluation, is
determined by the Mode parameter that is set when GetRecommendation is called. The default is
Recommended.

If, on return from this function, EligibleVaccineCount is zero, GetEligibleVaccines returns
UP_TO_DATE; otherwise, it returns RECOMMEND.

If GetEligibleVaccines returns a value other than RECOMMEND, then GetRecommendation returns
that value. On the other hand, if GetEligibleVaccines returns RECOMMEND, then these functions are
executed:

{
CheckOtherSeriesForEligibleVaccines();
Vaccine = SelectEligibleVaccineForRecommendation();

}

The function, CheckOtherSeriesForEligibleVaccines(), has the following structure:

{
For (each series except the SeriesBeingEvaluated)

{
OtherRecommendation = GetEligibleVaccines(OtherSeriesName);

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 10 of 18
Last updated: December 3, 2004

If (OtherRecommendation == WRONG_ALTERNATE;
continue;
If (OtherRecommendation == RECOMMEND)
IncrementCombinationCountsInSeriesBeingEvaluated();
else
MakeCombinationsIneligibleInSeriesBeingEvaluated();

}
}

This function checks all other series in the Schedule, except the SeriesBeingEvaluated, to
determine which vaccines in them are eligible for recommendation. Any vaccines which are found
to be eligible in both the SeriesBeingEvaluated and in other series will be given preference by
incrementing the parameter, VaccineCombinationCount; conversely, any vaccines in the
SeriesBeingEvaluated which are COMPLETE or UP_TO_DATE in other series, are marked ineligible
(VaccineEligibleFlag set to FALSE and EligibleVaccineCount decremented).

The function, SelectEligibleVaccineForRecommendation, looks at each eligible vaccine in the
SeriesBeingEvaluated and selects the one(s) with the highest VaccineCombinationCount. If more
than one vaccine is selected, the one in which VaccineSequenceNumber has the lowest value
is returned.

GetRecommendation, now completely described, evaluates one series in a schedule. As such, it will
not usually be executed directly by an application, but instead will be embedded in another
function, which will evaluate the entire schedule. This function would execute GetRecommendation
for each series in the schedule and would return, depending on an option specified by the calling
application, either (1) a list of all recommended immunizations, (2) the next recommendation in
the schedule or (3) if the individual is up to date on all series, the earliest date at which the next
immunization(s) would be recommended, along with a list of them.

8.0 Anniversary Method for Adding Intervals to Dates

The algorithm for evaluating immunization histories involves adding and subtracting time intervals
to and from dates. Most modern programming languages have functions for performing date
"arithmetic", which allow time intervals, expressed in days, to be added to or subtracted from
dates. For this reason, most evaluation algorithms convert all time intervals to days for processing.
Immunization recommendations, however, are typically stated in terms of months and years and
these terms can not be unambiguously converted into days: a month may be 28 to 31 days long
and a year may be 365 or 366 days long. It is, therefore, not possible to evaluate immunization
intervals accurately, using what may be called the Conversion Method.

The CDC Model Immunization Information System uses another method, called the Anniversary
Method for combining dates and time intervals, which emulates the common sense method for
dealing with months and years: most people would say that a child is one year old on his birthday
in the year following birth; similarly, he would be one month old on his birthday in the month
following birth. Two months from the last immunization would be the same month-day, two
months hence. Procedurally, the "anniversary method" calls for adding years to dates by
incrementing the date-year while holding the month and day constant; months are added by
incrementing the date- month (and date-year, if necessary) while holding the day constant.

In this approach, time intervals are expressed in text form as numbers, followed by modifiers to
indicate the units involved, for example, "6 years" or "3 months". A robust algorithm would allow
multiple terms to be combined in one expression, like "2 years 3 months". The terms could appear

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 11 of 18
Last updated: December 3, 2004

in the expression in any order. Weeks and days could also be evaluated and variant forms of the
modifiers ("yr", "mo", "wk", "dy", "y", "m", "d") could be used. The following, therefore, would be a
valid interval expression: "4 y 3 m 2 w 1 d".

To provide a convenient semantic for the application of the Anniversary Method, the following
functions are defined:

Date AddIntervalToDate(Date, Interval);

Date SubtractIntervalFromDate(Date, Interval);

BOOL IsSecondDateLaterThanFirstPlusInterval(Date, Date, Interval);

The first two functions return a date which is the result of adding (or subtracting) the interval to
the specified input date. The third function returns TRUE if the second date is later than the date
that is the result of adding the first date and the interval together; otherwise, FALSE is returned.

A number of modern programming languages, like Visual Basic, provide functions similar to these.

Examples

A child, born on 10/12/1995, will be one year old on his birthday in 1996. This one-year-old date is
calculated first by the Conversion Method with an incorrect result and then by the Anniversary
method with a correct result:

WRONG int nYear = 365;

CString strBirthDate = "10/12/1995";
CString strOneYearOldDate = AddDaysToDate(strBirthDate, nYear);
ASSERT(strOneYearOldDate == "10/11/1996");

RIGHT CString strInterval = "1 year";
 CString strBirthDate = "10/12/1995";
 CString strOneYearOldDate = AddIntervalToDate(strBirthDate, strInterval);
 ASSERT(strOneYearOldDate == "11/12/1996");

9.0 Provider Customization

In recent years, the ACIP has introduced into its recommendations specific areas within which
providers may customize the administration of immunizations. For example, the age at which a
particular dose of a vaccine is recommended may be represented by an age range, leaving it to
individual practitioners to decide where, within the range, the dose should be given. Also, in the
1997 recommendations, three different sets of polio recommendations are described, with a
statement that providers, and even parents, may choose among them.

These parameters may be contrasted with other aspects of the recommendations which, it may be
presumed, are not candidates for customization. Providers should not, for example, elect to give
oral polio vaccine to persons over 18 years of age and they should not continue to give DTP or
DTaP vaccine past the age of seven.

From this perspective, simply giving providers the ability to define additional schedules for
themselves would seem to be an inappropriate and unfocused way of implementing customization.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 12 of 18
Last updated: December 3, 2004

Experience has shown that the process of setting the parameters of an evaluation algorithm to
effect particular recommendations is very difficult and will probably remain a task for specialists.

The challenge for developers is to create mechanisms for customizing immunization schedules that
will be easy for providers to use and which will focus on the areas of the recommendations that the
ACIP has specifically marked for customization. This could be envisioned as a process, external to
the parameter setting process, which would present to providers the age ranges defined for
particular vaccine doses, allowing them to set a point within each range where they would prefer to
administer the immunization. For this purpose, Valid Recommended Age Range has been included
as a specifiable parameter in the data set shown in section 6.1. These parameters are not involved
in the actual evaluation process -- they are used in the customization process.

Also, where the ACIP has specified different sets of recommendations for the same series, as with
polio, providers could be presented with a simple choice of the alternatives for their selection. Each
of the sets of recommendations would be specified in the regular series definition and the
evaluation algorithm would dynamically select for use the one chosen by the provider. This choice
could also be stored in patient records so that the selection of a particular alternate series could be
specific to each patient.

10.0 Implementation

The implementation of an algorithm as complex as the one described presents several challenges
to developers. Of paramount importance is speed of execution: the algorithm must be fast enough
to be used as a real-time guide to current immunization needs in providers' offices as well as in
immunization follow-up processes, in which hundreds or thousands of individual histories must be
evaluated.

Careful consideration must be given to data structure design and execution efficiency. The choice
of a programming platform is also important -- it is entirely possible that some programming
environments may not be robust enough or powerful enough to support this mechanism
adequately.

Some of the more salient implementation issues will now be discussed, using an actual
implementation as an example: the CDC Model Immunization Information System. This is a
Windows-hosted application, written completely in C++ for the Windows NT operating system, and
using Microsoft's SQL Server as the database management system.

Note: there is no intention here to imply that the application or the computing platform represent
an ideal implementation of the process; they will simply be used to illustrate the issues involved.

The first issue to address is the database design for the Schedule Definition Parameters. These
parameters were described above as four data tables, linked by common fields. However, if the
database structure followed this abstract description, retrieval of a definition would require a series
of table joins, a relatively slow and cumbersome process. In the Model System, therefore, it was
decided to structure the data set as logical row types in a single table, keyed to the Schedule
Definition Name. This way, an entire definition (which might involve 50-100 rows) could be
retrieved by one SQL select statement with no joins.

Also, to simplify the structure, the Vaccine Dose Definition table was integrated into the Series
Vaccine Definition table, as follows: each of the dose-specific parameters, like recommended
interval and minimum age, is represented in the Vaccine Definition table as an array of numbers,

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 13 of 18
Last updated: December 3, 2004

contained in a string data type. This is a feasible approach since the number of doses in a series
(and, hence, the number of array elements) is typically small, on the order of 5-10.

Note that, to support the single-table design, the columns for all the tables are included in all rows
retrieved, regardless of whether they represent Schedule, Series or Vaccine Definitions. Columns
that are not relevant to a logical row type are left null or blank; variable character strings are used
to conserve data storage.

The second issue relates to the way a Schedule Definition is represented in memory. For execution
efficiency, it is imperative that an entire Schedule Definition, as well as the individual's
immunization and contraindication histories, be retrieved and maintained in memory while the
evaluation process is carried out. In the Model System, each Series in a Definition is retrieved and
stored in a structure, actually, a C++ object. As they are created, pointers to these objects are
stored in an array. The algorithm, therefore, accesses the parameters for each series by traversing
this pointer array. Within each Series object, Vaccine parameters are maintained in a set of string
arrays, in which each element pertains to a given vaccine in the Series list. Note that, in the case
of Vaccine Dose parameters, each string in a specified array represents a table of dose-specific
parameters for a given vaccine.

The representation of a Schedule Definition in memory is a relatively straightforward affair in an
object-oriented, or other, environment in which structures and pointers to structures can be
created and manipulated. The ability to create dynamically sizable arrays is important, too.
Programming environments without these features force the developer to exercise ingenuity in
setting up the process.

The third issue involves the design of a user process for creating and maintaining Schedule
Definitions. The process should allow easy access to, and manipulation of, any of the parameters in
a Definition. Graphical User Interfaces, like Windows, provide a convenient environment for this
purpose and there are many ways in which the process could be structured, so it will not be
explored in great detail.

11.0 Validation of Immunization Evaluation Algorithms

An immunization evaluation algorithm should produce the right output (recommend the right
vaccines) for all possible inputs (immunization and contraindication histories). While it is not
possible to enumerate all combinations of input, it should be feasible to create a complement of
representative cases that would demonstrate the validity of a particular implementation.

The National Immunization Program has created such a complement of test immunization histories
(including contraindication histories) with corresponding recommendations that have been
validated against the ACIP recommendations. These test cases are available in an ASCII text file
that can be used by developers to evaluate their own algorithms. A methodology for using the test
cases are given in the next section.

If an algorithm produces results that disagree with the outputs shown, it is presumed that the
algorithm is incorrect. If the algorithm is completely embedded in program source code, then the
code would have to be changed to correct the problem. In the case of a parameterized algorithm,
the problem may lie either in the code or in the parameter settings.

It is, of course, possible that a test case may be wrong. Disputes will be arbitrated by National
Immunization Program staff who work with the ACIP recommendations.

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 14 of 18
Last updated: December 3, 2004

Feedback is invited from developers who use this mechanism to validate their evaluation
algorithms.

12.0 A Methodology for Evaluating an Algorithm Using the NIP Test Cases

In general, the approach to validating an immunization evaluation algorithm involves writing a
computer program that will do the following:

1. Read each test case in the ASCII file
2. Execute the algorithm, using the relevant history data as input parameters
3. Compare the output of the algorithm to the recommendations in the test case data

Please note that the ASCII format and file structure noted in section 12.1 are no longer valid for
this document. The file structure have been reformatted in an excel format to coincide with that
utilized in the text version of the Test Cases associated with this algorithm. Data in the
accompanying spreadsheet now appears in the following sequence:- (1)Case #, (2)
Immunization Series, (3) Age of first dose, (4) Birth Date, (5) Evaluation Date, (6) Age, (7)
Immunization History, (8) Contra Indication, (9) Recommendation.

12.1 ASCII File Data Structure

The ASCII file represents the test cases as a set of data rows, each row corresponding to one of
three record types:

1. Immunization (Record Type = I), denoting a single immunization
2. Contraindication (Record Type = C), denoting a single contraindication
3. Recommendation (Record Type = R), denoting a single recommendation

Each test case is comprised of one or more data rows. Every case has at least one
Recommendation row and 0, 1 or more Immunization and/or Contraindication rows. For example,
the first test case consists of one Recommendation row and no Immunization or Contraindication
rows. This case gives the recommendation for a child who has had no immunizations and who
has no contraindications. All the data rows for a given case are linked by a Case ID number.

The field layout for the data rows is:

Field Name Data Type Length Position Description

Record Type Alpha 1 1 Values: R, I, or C
Case ID Numeric 5 2 Sequential Number
Birth Date Numeric 8 7 YYYYMMDD
Evaluation Date Numeric 8 15 YYYYMMDD
Field Name Data Type Length Position Description
Age at Evaluation Alpha 16 23 y = year, m = month, d = day
Vaccine Type Alpha 16 39 meaning depends on record type*
Event Date Numeric 8 55 meaning depends on record type**
Recommendation Code Numeric 1 63 valid values: 1-4***
Immunization Series Alpha 32 64 Series Being Evaluated

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 15 of 18
Last updated: December 3, 2004

* Record Type I: represents immunization administered
 Record Type C: represents vaccine that is contraindicated
 Record Type R: represents vaccine that is recommended

** Record Type I: represents date that immunization was administered
 Record Type C: represents date that contraindication expires
 Record Type R: always blank

*** 1=Complete, 2=Up To Date, 3=Recommendation, 4=No Recommendation

12.2 Vaccine Type Name Translation

The vaccine type names used in the test cases are obtained from the HL7 Immunization Data
Standard (V2.3). Vaccine names used in Immunization Data Systems may be different from
these. Computer validation programs, therefore, will have to create a translation table, mapping
the vaccine names, used by the test cases, to those that will be recognized by the algorithm
being tested.

HL7 Vaccine Table

Value Description Vaccine Name

54 Adenovirus Type 4 Adenovirus Type 4, live, oral
55 Adenovirus Type 7 Adenovirus Type 7, live, oral
24 Anthrax Anthrax
19 BCG Bacillus of Calmette & Guerin
27 Botulinum antitoxin Botulinum antitoxin
26 Cholera Cholera
29 CMVIG Cytomegalovirus immune globulin, intravenous
56 Dengue Fever Dengue Fever
12 Diphtheria antitoxin Diphtheria antitoxin
28 DT (Pediatric) Diphtheria & tetanus toxoids
20 DTaP Diphtheria-tetanus-acellular pertussis
50 DTaP-Hib DTaP-Haemophilus influenzae type b conjugate
01 DTP Diphtheria-tetanus-pertussis
22 DTP-Hib DTP-Haemophilus influenzae type b conjugate
57 Hantavirus Hantavirus
30 HBIG Hepatitis B immune globulin
31 Hep A--(Pediatric) Hepatitis A
52 Hep A--(Adult) Hepatitis A
45 Hep B--other or unspecified Hepatitis B--other or unspecified
08 Hep B--adolescent or pediatric Hepatitis B--adolescent or pediatric
42 Hep B--adolescent/high risk infant Hepatitis B--adolescent/high risk infant
43 Hep B—adult Hepatitis B--adult
44 Hep B--dialysis Hepatitis B--dialysis
58 Hepatitis C Hepatitis C
59 Hepatitis E Hepatitis E
60 Herpes Simplex 2 Herpes Simplex 2
17 Hib--unspecified Haemophilus influenzae type b conjugate-unspecified
46 Hib--PRP-D Haemophilus influenzae type b conjugate--PRP-D
47 Hib--HbOC Haemophilus influenzae type b conjugate--HbOC
48 Hib--PRP-T Haemophilus influenzae type b conjugate--PRP-T

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 16 of 18
Last updated: December 3, 2004

Value Description Vaccine Name
---continued
49 Hib--PRP-OMP Haemophilus influenzae type b conjugate--PRP-OMP
51 Hib-Hep B Haemophilus influenzae type b conjugate-Hep B
61 HIV Human Immunodeficiency Virus
62 Human Papilloma Virus Human Papilloma Virus
14 IG Immune globulin
15 Influenza--split (incl. purified Influenza--split (incl. purified surface antigen)

surface antigen)
16 Influenza--whole Influenza--whole
10 IPV Poliovirus vaccine, inactivated
39 Japanese encephalitis Japanese encephalitis
63 Junin Virus Junin Virus
64 Leishmaniassis Leishmaniassis
65 Leprosy Leprosy
66 Lyme Disease Lyme Disease
03 MMR Measles-mumps-rubella
04 M/R Measles & rubella
67 Malaria Malaria
05 Measles Measles
68 Melanoma Melanoma
32 Meningococcal Meningococcal
07 Mumps Mumps
69 Parainfluenza-3 Virus Parainfluenza-3 Virus
11 Pertussis Pertussis
23 Plague Plague
33 Pneumococcal Pneumococcal
02 OPV Poliovirus vaccine, oral
70 Q Fever Q Fever
18 Rabies--intramuscular injection Rabies--intramuscular injection
40 Rabies--intradermal injection Rabies--intradermal injection
72 Rheumatic Fever Rheumatic Fever
73 Rift Valley Fever Rift Valley Fever
34 RIG Rabies immune globulin
74 Rotavirus Rotavirus
71 RSV-IGIV Respiratory Syncytial Virus Immune Globulin,
 intravenous
06 Rubella Rubella
38 Rubella/Mumps Rubella & Mumps
75 Smallpox Smallpox
76 Staphylococcus Bacterio Lysate Staphylococcus Bacterio Lysate
09 Td (Adult) Tetanus-diphtheria
35 Tetanus toxoid Tetanus toxoid
77 Tick-borne Encephalitis Tick-borne Encephalitis
13 TIG Tetanus immune globulin
78 Tularemia Tularemia
25 Typhoid--oral Typhoid--oral
41 Typhoid--parenteral Typhoid--parenteral
53 Typhoid--parenteral, AKD Typhoid--parenteral, acetone-inactivated
 (U.S. military) (U.S. military)
79 Vaccinia Immune Globulin Vaccinia Immune Globulin
21 Varicella Varicella
81 VEE--inactivated Venezuelan Equine Encephalitis--inactivated

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 17 of 18
Last updated: December 3, 2004

Value Description Vaccine Name
---continued
80 VEE--live, attenuated Venezuelan Equine Encephalitis--live, attenuated
36 VZIG Varicella zoster immune globulin
37 Yellow fever Yellow fever

12.3 Algorithm Validation Procedure

The computer program that will validate an algorithm could be structured as a procedural loop in
which each test case is read in turn and submitted to the algorithm for evaluation and
comparison to the standard recommendations. The structure of such a procedure is shown
below:

while(TRUE)
{

ReadNextCase(); if (EOF)
break;
TranslateVaccineTypeNames();
ExecuteEvaluationAlgorithm(TestCaseData);
CompareRecommendations();

}

12.4 Evaluation of Results

Each test case evaluates one immunization series only and it provides recommendations for all
vaccines that would be recommended for that series, with the preferred recommendation
appearing first in the list. For example, in the test case for the DTP/DT/DTaP/Td series, involving
a child who is two months old and has no immunizations, the recommendations are:

DTP/PRP-T
DTP-HbOC
DTP
DT ped

In contrast, the algorithm being validated may make recommendations for all series on each
execution. This suggests a simple strategy for scoring the algorithm's performance:

1. If the algorithm recommends the vaccine that appears first on the standard list, add 1 to

an A-Tally.

2. If the algorithm recommends any vaccine on the standard list, add 1 to a B-Tally.

3. If the standard recommendation is "Up To Date" or "No Recommendation", and the
algorithm recommends a vaccine that appears on the list for the next test case for the
same series, add 1 to a C-Tally.

4. If the standard recommendation is "Complete", and the algorithm recommends a vaccine

that appears on the list for the previous test case for the same series, add 1 to the C-Tally.

At the end of the run, subtract the C-Tally total from both the A- and B-Tally totals. Then,
express the resulting totals as percentages of the total number of test cases in the case
complement. The higher the percentage on either of the resulting tallies, the better is the

__
Programmer's Guide to the Automated Immunization Evaluation Process Page 18 of 18
Last updated: December 3, 2004

agreement with the standard. The A-Tally, of course, represents a stricter test. Perfect
agreement with the standard would be indicated by 100% scores on both the A- and B-Tallies.

Attachments

1. Algorithm Parameters Data File
2. Algorithm Parameters Text File
3. Test Cases Data File
4. Test Cases Text File

